Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.592
Filtrar
1.
Methods Mol Biol ; 2787: 201-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656491

RESUMO

Ribonucleic Acid (RNA) isolation is a basic technique in the field of molecular biology. The purpose of RNA isolation is to acquire pure and complete RNA that can be used to evaluate gene expression. Many methods can be used to perform RNA isolation, all of them based on the chemical properties of nucleic acids. However, some of them do not achieve high RNA yields and purity levels when used in a number of marginally studied crops of agronomic importance, such as grain and vegetable amaranth plants. In the method described here, the use of guanidinium thiocyanate and two additional precipitation steps with different reagents designed to obtain high yields and RNA purity levels from diverse plant species employed for plant functional genomics studies is described.


Assuntos
Produtos Agrícolas , RNA de Plantas , Produtos Agrícolas/genética , RNA de Plantas/isolamento & purificação , RNA de Plantas/genética , Tiocianatos/química , Guanidinas/química , Amaranthus/genética , Amaranthus/química
2.
Methods Mol Biol ; 2788: 375-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656526

RESUMO

Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.


Assuntos
Germinação , Campos Magnéticos , Desenvolvimento Vegetal , Sementes , Germinação/efeitos da radiação , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Plantas/efeitos da radiação , Plantas/metabolismo
3.
Genomics ; : 110848, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663523

RESUMO

Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study provides fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.

4.
Sci Rep ; 14(1): 9508, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664476

RESUMO

Foxtail millet is a highly nutritious crop, which is widely cultivated in arid and semi-arid areas worldwide. Humic acid (HA), as a common plant growth regulator, is used as an organic fertilizer and feed additive in agricultural production. However, the impact of potassium humate KH on the photosynthetic rate and yield of foxtail millet has not yet been studied. We explored the effects of KH application on the morphology, photosynthetic ability, carbon and nitrogen metabolism, and yield of foxtail millet. A field experiment was performed using six concentrations of KH (0, 20, 40, 80, 160, and 320 kg ha-1) supplied foliarly at the booting stage in Zhangza 10 cultivar (a widely grown high-yield variety). The results showed that KH treatment increased growth, chlorophyll content (SPAD), photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs). In addition, soluble protein content, sugar content, and nitrate reductase activity increased in KH-treated plants. With increased KH concentration, the effects became more evident and the peak values of each factor were achieved at 80 kg ha-1. Photosynthetic rate showed significant correlation with SPAD, Tr, Gs, and soluble protein content, but was negatively correlated with intercellular CO2 concentration. Compared to that of the control, the yield of foxtail millet under the T2, T3, T4, and T5 (40, 80, 160, and 320 kg ha-1 of KH) treatments significantly increased by 6.0%, 12.7%, 10.5%, and 8.6%, respectively. Yield exhibited a significant positive correlation with Tr, Pn, and Gs. Overall, KH enhances photosynthetic rate and yield of foxtail millet, therefore it may be conducive to stable millet production. These findings may provide a theoretical basis for the green and efficient production of millet fields.


Assuntos
Clorofila , Fertilizantes , Substâncias Húmicas , Fotossíntese , Setaria (Planta) , Fotossíntese/efeitos dos fármacos , Setaria (Planta)/metabolismo , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/crescimento & desenvolvimento , Clorofila/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
5.
Anim Biosci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665081

RESUMO

Objective: Increasing breast meat production is one of the primary goals of the broiler industry. Over the past few decades, tremendous progress has been made in genetic selection and the identification of candidate genes for improving the breast muscle mass. However, the molecular network contributing to muscle production traits in chickens still needs to be further illuminated. Methods: A total of 150 1-day-old male 817 broilers were reared in a floor litter system. At the market age of 50 d, eighteen healthy 817 broilers were slaughtered and the left pectoralis major muscle sample from each bird was collected for RNA-seq sequencing. The birds were then plucked and eviscerated and the whole breast muscle was removed and weighed. Breast muscle yield was calculated as the ratio of the breast muscle weight to the eviscerated weight. To identify the co-expression networks and hub genes contributing to breast muscle yield in chickens, we performed weighted gene co-expression network analysis (WGCNA) based on the 18 transcriptome datasets of pectoralis major muscle from eighteen 817 broilers. Results: The WGCNA analysis classified all co-expressed genes in the pectoral muscle of 817 broilers into 44 modules. Among these modules, the turquoise and skyblue3 modules were found to be most significantly positively (r=0.78, p=1e-04) and negatively (r=-0.57, p=0.01) associated with breast meat yield, respectively. Further analysis identified several hub genes (e.g., DLX3, SH3RF2, TPM1, CAV3, MYF6, and CFL2) that involved in muscle structure and muscle development were identified as potential regulators of breast meat production. Conclusion: The present study has advanced our understanding of the molecular regulatory networks contributing to muscle growth and breast muscle production and will contribute to the molecular breeding of chickens in the future.

6.
Data Brief ; 54: 110398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665157

RESUMO

The data set describes variables collected from a French (N 48.84°, E 1.95°) field trial, over a twelve-year period (2009-2020), in which four innovative cropping systems designed to reach multiple environmental and production goals were assessed. The four cropping systems were designed with new combinations of agricultural practices; they differed in terms of pesticide uses, nitrogen inputs, tillage practices, and crop sequences. Both biotic and abiotic variables were measured. In a previous data paper, we focused on nitrogen fluxes collected from two systems, over eight years (2009-2016). In the present one, we enlarge the scope of the variables, including more crop descriptions and environmental indicators, from all four systems, and over a longer period (2009-2020). The biotic data are: growth stages; aboveground plant nitrogen content and biomass collected at different growth stages, depending on the species; yield components of all the crops; and yield harvested with a combine machine. No weed, crop disease, and pest data are described. The abiotic data are physical and chemical properties of the soil (i.e. texture, calcium carbonate content, pH, organic carbon contents, and nitrogen contents) collected at different assessment periods. All agricultural practices, and climate were regularly recorded, and the treatment frequency indexes and the energy consumptions were computed. These data could be used for benchmarking, to design low-input systems, to improve models for parameterization and validation, and to increase the predictive accuracy of models of crop growth and development, specifically for orphan species such as linseed, faba bean or hemp, and for soil carbon and soil nitrogen fluxes in various conditions.

7.
Microb Cell Fact ; 23(1): 113, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622698

RESUMO

BACKGROUND: Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS: Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION: In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.


Assuntos
Streptomyces , Streptomyces/metabolismo , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regiões Promotoras Genéticas , Família Multigênica
8.
Physiol Mol Biol Plants ; 30(2): 185-198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623165

RESUMO

The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01423-y.

9.
Ecol Evol ; 14(4): e11297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623520

RESUMO

Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.

10.
Data Brief ; 54: 110385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623548

RESUMO

The dataset provided details on how tillage methods and nutrient management impacted the productivity of the four crops (mustard>mungbean>Transplanting (T.) aus >Transplanting (T.) aman) cropping system and the overall soil health. The specific tillage techniques examined were minimum tillage (MT), conventional tillage (CT), and deep tillage (DT). Regarding nutrient management, NM1 utilized 100 % soil test-based (STB) fertilization following fertilizer gradient generation (FRG); NM2 applied 125 % of STB after FRG-2018; NM3 consisted of 100 % STB (with 80 % from chemical fertilizers and 20 % from cow dung); and NM4 relied on native fertility without any fertilization. Over three consecutive seasonal years (2018-19, 2019-20, and 2020-21), twelve treatments were replicated three times following a factorial totally randomized design. The comparative analysis of crop yield, rice equivalent yield, system productivity and production efficiency indicated superior performance of MT over both CT and DT. Furthermore, in relation to agricultural productivity metrics, the application of the nutrition package NM3 demonstrated performance levels exceeding the average. The adoption of MT and the incorporation of the NM3 nutrition package led to notable advancements in organic matter, field capacity, microbial biomass nitrogen, microbial biomass carbon and soil nutrient levels (N, P, K, S, Zn, and B). Consequently, the synthesis of the NM3 with MT is posited as a strategic approach for soil enhancement and the augmentation of crop productivity.

11.
Plants (Basel) ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38592838

RESUMO

Smooth bromegrass (Bromus inermis) is a perennial, high-quality forage grass. However, its seed yield is influenced by agronomic practices, climatic conditions, and the growing year. The rapid and effective prediction of seed yield can assist growers in making informed production decisions and reducing agricultural risks. Our field trial design followed a completely randomized block design with four blocks and three nitrogen levels (0, 100, and 200 kg·N·ha-1) during 2022 and 2023. Data on the remote vegetation index (RVI), the normalized difference vegetation index (NDVI), the leaf nitrogen content (LNC), and the leaf area index (LAI) were collected at heading, anthesis, and milk stages. Multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) regression models were utilized to predict seed yield. In 2022, the results indicated that nitrogen application provided a sufficiently large range of variation of seed yield (ranging from 45.79 to 379.45 kg ha⁻¹). Correlation analysis showed that the indices of the RVI, the NDVI, the LNC, and the LAI in 2022 presented significant positive correlation with seed yield, and the highest correlation coefficient was observed at the heading stage. The data from 2022 were utilized to formulate a predictive model for seed yield. The results suggested that utilizing data from the heading stage produced the best prediction performance. SVM and RF outperformed MLR in prediction, with RF demonstrating the highest performance (R2 = 0.75, RMSE = 51.93 kg ha-1, MAE = 29.43 kg ha-1, and MAPE = 0.17). Notably, the accuracy of predicting seed yield for the year 2023 using this model had decreased. Feature importance analysis of the RF model revealed that LNC was a crucial indicator for predicting smooth bromegrass seed yield. Further studies with an expanded dataset and integration of weather data are needed to improve the accuracy and generalizability of the model and adaptability for the growing year.

12.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592887

RESUMO

The yield, quality, and water-fertilizer use efficiency of crops are important parameters for assessing rational water and fertilizer management. For an optimal water and fertilizer system with respect to the nutrient solution irrigation of greenhouse tomatoes using cultivation substrates, a two-year greenhouse cultivation experiment was conducted from 2022 to 2023. Three drip fertigation treatments (T1, T2, and T3) were implemented in the experiment, where nutrient solutions were supplied when the substrate's water content reached 60%, 70%, and 80%. The frequency of nutrient solution applications is based on weighing coconut coir strips in the morning and evening at 7:00 to determine the daily water consumption of plants. Nutrient solutions were supplied when the substrate's water content reached the lower limit, and the upper limit for nutrient supply was set at 100% of the substrate water content. The nutrient solution application was carried out multiple times throughout the day, avoiding the midday heat. The nutrient solution formula used was the soilless tomato cultivation formula from South China Agricultural University. The results show that plant height and the leaf area index rapidly increased in the early and middle stages, and later growth tended to stabilize; the daily transpiration of tomatoes increased with an increase in nutrient solution supply, and it was the greatest in the T3 treatment. Between the amount of nutrient solution application and the number of years, the yield increased with the increase of the amount of nutrient solution, showing T3 > T2 > T1. Although the average yield of the T2 treatment was slightly lower than that of the T3 treatment by 3.65%, the average irrigation water use efficiency, water use efficiency, and partial fertilizer productivity of the T2 treatment were significantly higher than those of the T3 treatment by 29.10%, 19.99%, and 28.89%, respectively (p < 0.05). Additionally, soluble solid, vitamin C, and soluble sugar contents and the sugar-acid ratio of tomatoes in the T2 treatment were greater than those in the other two treatments (p < 0.05). Using the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method, it was concluded that the nutrient solution application rate of 70% can significantly increase water and fertilizer use efficiency and markedly improve the nutritional and flavor quality of the fruit without a significant reduction in yield. This finding provides significant guidance for the high-yield, high-quality, and efficient production of coconut coir-based cultivated tomatoes in greenhouses.

13.
BMC Plant Biol ; 24(1): 320, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654155

RESUMO

BACKGROUND: As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS: In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS: In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.


Assuntos
Fagopyrum , Lactonas , Reguladores de Crescimento de Plantas , Fagopyrum/efeitos dos fármacos , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Lactonas/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácido Abscísico/metabolismo
14.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654179

RESUMO

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Nitrogênio/metabolismo , Resistência à Seca
15.
Sci Rep ; 14(1): 9416, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658570

RESUMO

Rice (Oryza sativa L.) is an important member of the family Poaceae and more than half of world population depend for their dietary nutrition on rice. Rice cultivars with higher yield, resilience to stress and wider adaptability are essential to ensure production stability and food security. The fundamental objective of this study was to identify higher-yielding rice genotypes with stable performance and wider adaptability in a rice growing areas of Pakistan. A triplicate RCBD design experiment with 20 Green Super Rice (GSR) advanced lines was conducted at 12 rice growing ecologies in four Provinces of Pakistan. Grain yield stability performance was assessed by using different univariate and multivariate statistics. Analysis of variance revealed significant differences among genotypes, locations, and G x E interaction for mean squares (p < 0.05) of major yield contributing traits. All the studied traits except for number of tillers per plant revealed higher genotypic variance than environmental variance. Broad sense heritability was estimated in the range of 44.36% to 98.60%. Based on ASV, ASI, bi, Wi2, σ2i and WAAS statistics, the genotypes G1, G4, G5, G8, G11 and G12 revealed lowest values for parametric statistics and considered more stable genotypes based on  paddy yield. The additive main effects and multiplicative interaction (AMMI) model revealed significant variation (p < 0.05) for genotypes, non-signification for environment and highly significant for G × E interaction. The variation proportion of PC1 and PC2 from interaction revealed 67.2% variability for paddy yield. Based on 'mean verses stability analysis of GGE biplot', 'Which-won-where' GGE Biplot, 'discriminativeness vs. representativeness' pattern of stability, 'IPCA and WAASB/GY' ratio-based stability Heat-map, and ranking of genotypes, the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 were observed ideal genotypes with yield potential more than 8 tons ha-1. Discriminativeness vs. representativeness' pattern of stability identifies two environments, E5 (D.I Khan, KPK) and E6 (Usta Muhammad, Baluchistan) were best suited for evaluating genotypic yield performance. Based on these findings we have concluded that the genotypes G1, G2, G3, G5, G8, G10, G11 and G13 could be included in the commercial varietal development process and future breeding program.


Assuntos
Genótipo , Oryza , Oryza/genética , Oryza/crescimento & desenvolvimento , Paquistão , Fenótipo , Melhoramento Vegetal/métodos , Interação Gene-Ambiente , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Característica Quantitativa Herdável
16.
Heliyon ; 10(8): e29555, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660240

RESUMO

Zea mays L is a crucial crop for Brazil, ranking second in terms of production and sixth in terms of exports. In Brazil, the second season, or off-season, accounts for 80 % of the overall maize output, which primarily occurs after the soybean main season. A maize yield forecast model for the off-season was developed and implemented throughout Brazilian territory due to its importance to the country's economy and food security. The model was built using multiple linear regressions that connected outputs simulated from a land surface model used in large-scale analysis for agriculture (JULES-crop), to agrometeorological indicators. The application of the developed model occurred every 10 days from the sowing until the maturation. A comparison of the forecasting model was verified with the official off-season maize yields for the years 2003-2016. Agrometeorological indicators during the reproductive phase accounted for 60 % of the interannual variability in maize production. When outputs simulated by JULES-crop were included, the forecasting model achieved Nash-Sutcliffe modeling efficiency (EF) of 0.77 in the maturation and EF = 0.72 in the filling-grain stage, suggesting that this approach can generate useful predictions for final maize yield beginning on the 80th day of the cycle. Outputs of JULES crop enhanced modeling performance during the vegetative stage, reducing the standard deviation error in prediction from 0.59 to 0.49 Mg ha-1.

17.
Heliyon ; 10(8): e29203, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660280

RESUMO

Fodder radish is widely used as a livestock supplement, however, the nutritional value of fodder radish under different water conditions remains insufficiently understood. This study aimed to assess the chemical components and in vitro, ruminal dry matter degradability of two fodder radish genotypes (Endurance and Line 2) subjected to three irrigation regimes: well-watered (W1), moderate water stress (W2), and severe water stress (W3). The analysis revealed statistically significant effects of the main factors on the chemical composition and estimates of fodder radish leaves and tubers, particularly in terms of Crude Protein (CP) and Ether Extract (EE) across genotypes. Both Endurance and Line 2 leaves exhibited interaction effects on N, P, Ca, Mg, K, Na, Fe, Zn, Cu, Mn and Al. Meanwhile only Na, K, Zn, and Cu were affected in tubers. Endurance tubers, specifically, displayed significantly higher (p < 0.05) CP content, with Line 2 tubers showing the highest CP content under W1. Furthermore, Endurance leaves had higher levels of Neutral Detergent Fibre, EE, and Non-Structural Carbohydrate (NSC) compared to Line 2 leaves under W1. Notable differences in tuber fibres were found, specifically in Acid Detergent Fibre for Endurance, with W3 exhibiting a higher concentration level. Both genotypes displayed higher NSC under W3. Significant variations in macro and mmicro minerals were observed between water levels in both genotypes. In terms of in vitro degradability during the 24 h and 48 h incubation periods, all treatments met the acceptable level of 60-80 %. Regardless of water regimes, both Endurance and Line 2 showed nutrient concentrations meeting the minimum requirements for optimal animal production. Though, Line 2 exhibits significantly higher nutritional value and in vitro ruminal dry matter degradability than Endurance, evident in both leaves and tubers. Notably, moderate water stress conditions yielded better nutritional quality and in vitro ruminal dry matter degradability compared to both well-watered and severe water stress treatments. This suggests that applying 180-220 mm of water per season can also yield better nutritive value of these genotypes.

18.
3 Biotech ; 14(5): 132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645792

RESUMO

The present study was carried out to investigate the physio-biochemical and molecular responses of two rice genotypes (Noichi and N22) under drought, heat and combined drought/heat stress conditions. The antagonistic stomatal activity was found under the combined stress conditions; stomata were open under control and heat stress, conversely, stomata remained closed under drought and combined stress levels. Photosynthetic activity and chlorophyll content are decreased by the overproduction of reactive oxygen species and increased lipid peroxidation in both rice genotypes. To prevent oxidative damage, many antioxidant enzymes like catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) are produced in both genotypes under these conditions. Under the single stress conditions, CAT activity were increased in N22, whereas combined stress levels, SOD and APX activity were higher for both genotypes. Proline accumulation was also increased under single as well as combined stress conditions for both genotypes to combat stress injuries. Pollen viability was lost under all stress levels but severe loss was found under combined stress levels, which causes spikelet sterility leading to yield losses for both genotypes. As evident from transcript levels, HSP71.18 and HSP71.10 expressions were higher under single and combined conditions, butHSP72.57 gene expression increased only by individual stress levels. WRKY11, WRKY 55, DREB 2A, LEA3 and DHN1 were positively expressed under all stress levels. Conversely, expression of DREB2B genes was higher only under single stress levels. In summary, these results suggest that the effect of combined stress is different from the single stress and it is more severe than the individual stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03980-1.

19.
Sci Rep ; 14(1): 9182, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649422

RESUMO

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Assuntos
Citrus , Ácidos Hexurônicos , Pectinas , Pectinas/química , Pectinas/isolamento & purificação , Citrus/química , Viscosidade , Tamanho da Partícula , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Fracionamento Químico/métodos , Fenômenos Químicos , Frutas/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Fenóis/análise , Fenóis/química , Fenóis/isolamento & purificação , Esterificação
20.
BMC Plant Biol ; 24(1): 310, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649811

RESUMO

BACKGROUND: Drought can result in yield losses, the application of plant growth regulators is an effective measure to improve drought resistance and yield. The objective of the study was to explore the application potential of mepiquat chloride (MC) in regulating soybean yield and drought resistance. METHODS: In this study, a three-year field experiment was designed and combined with drought experiments to measure the yield of popularized varieties during 2021-2022 and drought-resistant and drought-sensitive varieties were selected, and planted in the field in 2023. RESULTS: MC increased the yield of HN84 and HN87 for two consecutive years from 2021 to 2022 and improved their physiological characteristics under field conditions. Under M200 treatment, the yield of HN84 increased by 6.93% and 9.46%, and HN87 increased by 11.11% and 15.72%. Different concentrations of MC have different effects on soybeans. The maximum increase of SOD, POD and proline in HN84 under M400 treatment reached 71.92%, 63.26% and 71.54%, respectively; the maximum increase of SOD, POD and proline in HN87 under M200 treatment reached 21.96%, 93.49% and 40.45%, respectively. In 2023, the foliar application of MC improved the physiological characteristics of HN44 and HN65 under drought-stress conditions. On the eighth day of drought treatment, compared to the drought treatment, the leaf and root dry weight of HN44 under M100 treatment increased by 17.91% and 32.76%, respectively; the dry weight of leaves and roots of HN65 increased by 20.74% and 29.29% under M200 treatment, respectively. MC also reduced malondialdehyde (MDA) content, decreased antioxidant enzyme activity and proline content. In addition, different concentrations of MC increased the chlorophyll fluorescence parameters (Fs, Fv/Fm, YII, and SPAD). In the field, the plant height of the two varieties decreased significantly, the yield increased, the number of two-grain and three-grain pods increased, and the stem length at the bottom and middle decreased with MC induction. CONCLUSIONS: The application of 100-200 mg/L MC effectively improved drought resistance and increased yield. This study provided support for the rational application of MC in soybean production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA